planetary exploration – The Spudis Lunar Resources Blog http://spudislunarresources.nss.org/blog Thu, 02 Aug 2018 07:01:24 +0000 en-US hourly 1 https://wordpress.org/?v=4.9.8 40951433 The New NASA Budget and “Hurrying” Back to the Moon http://spudislunarresources.nss.org/blog/the-new-nasa-budget-and-hurrying-back-to-the-moon/ http://spudislunarresources.nss.org/blog/the-new-nasa-budget-and-hurrying-back-to-the-moon/#comments Wed, 14 Feb 2018 13:12:32 +0000 http://spudislunarresources.nss.org/blog/?p=1793 Continue reading ]]>

The new direction. This time, they got the emphasis right.

When new budgets are issued, our first instinct is to see how much we were allocated and then moan about why it isn’t enough. It’s no different with the new NASA budget, and so the predictable responses have started. Budgets are statements of intent and philosophy by administrations. They are changed and modified by Congress during the appropriations process, one that involves a good deal of give and take on both sides. In this case, NASA’s new budget affirms the White House’s intent to return to the Moon, specifically by creating a new program of lunar robotic missions in preparation for permanent human return.

Details are sparse, largely because NASA has no permanent Administrator at the moment and thus, no senior management team to devise an architecture for lunar return. The ridiculous delay in confirming Jim Bridenstine as the new Administrator greatly hinders the agency’s ability to prepare and present a coherent, logical rationale with their budget proposal. The current document is largely a placeholder, designed to indicate general intent rather than advocate any specific implementation. So any talk about the Administration not moving fast enough getting us back to the Moon is moot. We’ve wasted a lot of time and money starting lunar programs, only to have them killed before they could get started. This administration appears willing to try and get it right this time.

The biggest news seems to be President Trump’s desire to end U.S. financial support for the operation and use of the International Space Station by 2025. But rather than simply “pulling the plug” on the program as President Obama did to Project Constellation in 2010, the new plan calls for a “seamless transition” to commercial and/or international operation of the ISS by that date. Many are skeptical of the expression of such intent, but at least this issue has been given some serious thought.

The International Space Station (ISS/Station) – continuously operated and inhabited since November 2000 – was not intended to be an endless NASA program. Originally, a space station in low Earth orbit (LEO) was conceived as a stepping-stone to destinations in space beyond LEO. The original von Braun architecture was shuttle-station-Moon tug-Mars mission, done in that order. The logic of the von Braun plan was that each step into space enabled the next one. It was further envisioned that once emplaced, no asset would be abandoned, although left unanswered was exactly what entity would be financially responsible for an operational waypoint.

That stepping-stone concept was largely abandoned during the 1993 re-design of the ISS, when the station was planned for a 51.6° inclination orbit to accommodate launches from the Baikonur Cosmodrome, the Russian spaceport. Due to the difficulty of conducting cislunar voyages from this orbit, plans for a reusable space tug (orbital transfer vehicle) to be based at Station were dropped. The focus shifted from space transportation and exploration to materials science and the study of microgravity and human health in space. The use of Station as a transportation node for deep space missions was eliminated, effectively ending the manned “National Space Transportation System.” Thus, ISS became not a stepping-stone, but an end-point destination and it has served that role for the last 20 years. From that perspective alone, designation of the Moon as the next step is long overdue.

Beyond these considerations, commercialization of the ISS is the logical next step after initiation of the commercial cargo and commercial crew programs. When the Vision for Space Exploration (VSE) was unveiled in 2004, some quarters immediately began planning an “exit strategy” for the proposed lunar base. So why is it now such a stretch to plan an exit strategy for the ISS? We have learned much about operations, assembly and maintenance of large systems and spacecraft, and about human health in microgravity. So in that sense, ISS has served some of its role as an exploration “stepping-stone.” We have demonstrated what humans and machines in space can do, and now it’s time to pass this phase on to commercial interests and focus on the logical, constructive next step – the Moon.

For space science, the new budget both giveth and taketh. In contrast to some hysteria, Earth science has not been decimated – continued mission development, launch and operations are supported to the tune of $1.78 billion. Four missions are terminated: three climate science missions in development and one operational spacecraft (DSCOVR). The latter has operated for the last three years and has already met its core mission goals. There has been much gnashing of teeth about the proposed termination of the Wide Field Infrared Survey Telescope (WFIRST), the next generation space telescope. The astrophysics community must accept some responsibility for that, as the James Webb Space Telescope, originally to cost a little less than $2 billion and launch by 2011, now costs over $10 billion (and counting) and a has a launch scheduled for mid-2019, set a poor example of technical and managerial oversight. Lest you think that I unfairly pick on other sciences here, note that my field (planetary science) has its own white whale in the form of the Mars Sample Return (MSR), a mission whose cost would most certainly exceed $10 billion. The desirement of more than 30 years of studies, MSR is barely possible technically and has held questionable scientific value since the late 1980s, when we recognized that certain meteorites come from Mars. Still, the MSR is provided study money in the new budget.

Another criticism of the new budget is the vague timeline for lunar return. Here we must recall how the now cancelled Asteroid Retrieval Mission (ARM), proposed by the last administration as a substitute for lunar return, not only flew in the face of bipartisan Congressional support for a sustained lunar return, but also consumed valuable time and money, thus delaying plans for a sustained space transportation system using the Moon’s resources. So any suggestion that we’re not moving back to the Moon fast enough with this budget is laughably inappropriate.

Possibly the most serious issue in terms of the new direction is the retention of the Deep Space Gateway (DSG), a program of questionable value for lunar return. This facility is a morphed version of ARM, designed to give the appearance of accomplishment on the “Journey to Mars”. With a need to give the new Orion spacecraft a destination it can reach, NASA plans to place the DSG in what is called a “rectilinear halo orbit” around the Moon. The DSG is thus both “in cislunar space” and “near the Moon,” with the current NASA management claiming that these properties mean that the DSG supports the Trump Administration’s goal of lunar return. In fact, both the location and configuration of the DSG make it irrelevant to that goal. The DSG orbit makes lunar surface access marginal and difficult – it is too far from the Moon, resulting in long transit times and large delta-v (energy) requirements to access the surface. The current strawman design for DSG is that of a “mini-me” ISS – a habitat module, a docking collar, and some solar arrays. We will learn nothing from this configuration that we do not already know from the ISS experience. So don’t blame new the budget for why we’re not “hurrying back” to the Moon.

That said, DSG could become a useful piece of a cislunar transportation infrastructure if it were moved closer to the Moon (a few hundred km high polar orbit). Placed there, it could serve as a transportation hub for a reusable lunar lander and the cislunar crew transport. Ultimately, it could become a lunar orbital propellant depot, with the ability to accept and distribute lunar products. Such a facility would become part of the permanent transportation infrastructure of cislunar space and play its important role in stimulating commercial space development

The new budget also proposes to eliminate NASA’s Office of Education and move that money to exploration efforts. Though widely criticized, I think this is actually a good move. NASA has spent untold millions for “education” over the years, although these efforts have not resulted in any noticeable increase in public support for space. And there are more unemployed aerospace engineers and scientists now than there are actually working in the field. The idea that NASA must have an Education Office to create the next generation of STEM (Science, Technology, Engineering, Math) students is ludicrous – the biggest influx of new technical people inspired by space exploration came during Apollo, when the agency’s outreach efforts were minimal and primitive in the extreme but we were flying to the Moon. I was one of those students and I didn’t need a NASA education program to get me excited about science and space. To inspire the next generation of STEM workers, we need to actually do inspiring things in human space exploration – real and ongoing missions that show there are actual roles and careers in space for their generation.

The good news is that the administration’s budget emphasizes the Moon as the goal. With limited funds in our national purse for discretionary spending, the amount allotted to NASA for space exploration shows this administration favors a strong national manned space program. We can always wish for more money. Perhaps now is the opportune time for NASA leadership to show that it can budget $20 billion a year into an incremental and sustainable return to the Moon.  With a return to the Moon, we can test the viability of lunar resources, science will flourish (e.g., astronomers will be able to see deeply back into time, sheltered from Earth’s noise on the Moon’s far side), and we will create a permanent spacefaring system, thereby, finally bringing the Moon and cislunar space into our economic sphere. It isn’t about “hurrying” somewhere, or the “size” of budgets, but seizing the opportunity to start and remain on a path that sees us reclaim our leadership role in space exploration and space development.

]]>
http://spudislunarresources.nss.org/blog/the-new-nasa-budget-and-hurrying-back-to-the-moon/feed/ 15 1793
Humans and Robots — Again http://spudislunarresources.nss.org/blog/humans-and-robots-again/ http://spudislunarresources.nss.org/blog/humans-and-robots-again/#comments Fri, 15 Dec 2017 20:45:36 +0000 http://spudislunarresources.nss.org/blog/?p=1740 I continue my musings on this perennial topic (and its relevance to the recent Presidential announcement) in a new post at Air & Space.  Comment here, if desired.

]]>
http://spudislunarresources.nss.org/blog/humans-and-robots-again/feed/ 15 1740
Are Humans Needed on the Moon? http://spudislunarresources.nss.org/blog/are-humans-needed-on-the-moon/ http://spudislunarresources.nss.org/blog/are-humans-needed-on-the-moon/#comments Sun, 26 Nov 2017 09:11:10 +0000 http://spudislunarresources.nss.org/blog/?p=1714 Continue reading ]]>

Apollo 17 LM Pilot and professional geologist Jack Schmitt examines a boulder at the Taurus-Littrow landing site, December, 1972

During my recent appearance on The Space Show, a caller questioned the need for people on the Moon. If teleoperated robots can be used to mine resources, manufacture useful products, and set up a lunar outpost, as I have proposed, why do we even need people on the Moon? The caller’s question touches once again on the age-old argument about the transport and support of humans in outer-space, where their presence is both mass- and power-intensive and thus, more costly. But we shortchange humanity if we fall into the trap of believing that a human presence on the Moon (or in space in general) is either not necessary or that it is only required for making repairs, or for updating equipment.

Now that returning to the Moon is in the news, “Why send humans into space at all?” will be asked, again, as it lies at the heart of a very old debate and battle about space. It is the same question that spawned the 2014 Congressionally mandated study by the National Academy of Sciences. That effort posed two “enduring questions”: How far can humans go and what can they accomplish when they get there? But how can anyone truly know the answers to those questions or make sweeping pronouncements about them? Fortunately, because we’ve had 50 years of human space missions, we have demonstrable evidence about the “usefulness” and promise of humans living and working in space.

In December, we’ll celebrate the 45th anniversary of the Apollo 17 mission of 1972 – the first (and so far, only) mission to fly a professional geologist to the Moon – Lunar Module Pilot Jack Schmitt. The Apollo 17 landing site was a complex, multiple objectives site whose complete and thorough understanding and characterization was not likely within the allotted 3-days there. Nonetheless, Apollo 17 crewmembers Commander Gene Cernan and Jack Schmitt traversed and explored the Taurus-Littrow valley “from one end to the other” (as Gene would say from the Moon), and where they made several significant discoveries. They found highland rocks of extreme antiquity, almost as old as the Moon itself (4.6 billion years). They sampled large boulders that represented the remnants of ancient collisions that created the large, circular mare basins more than 3.9 billion years ago. They discovered orange and black soil at Shorty crater, which later was found to be composed of tiny beads of glass created when lava generated 100s of km deep within the lunar interior erupted and sprayed into space and fell back to the surface. And they collected pieces of material thrown out from one of the youngest large craters on the Moon, Tycho, more than 2200 km distant and whose impact occurred “only” 100 million years ago. Eight hundred and forty pounds of lunar rock and soil samples were returned to Earth by American astronauts over six lunar missions. These samples have given a tangible, invaluable context to scientists studying the Moon remotely, for over 48 years.

Could autonomous machines or those under remote control have carried out this complete and thorough exploration of a complex geologic landing site? Most scientists involved in the Apollo program would argue that machines could not have accomplished what the Apollo 17 crew managed to do. Certainly, scientists studying Mars via rovers have often wished that a thinking, walking and talking human could replace that machine. Productive geological fieldwork requires more than the ability to make measurements and pick up rocks – it is important to sample the right rocks, but also to put visual and mental data into a conceptual framework that guides the geologist toward reconstructing the history and processes of a planet. Of course, “grab samples” can be informative when the site is geologically simple and the rocks have a clear context. An example of this might be collecting samples from the youngest lava flow on the Moon. A scoop of fresh regolith from such a site would most certainly contain chips of lava from that flow, allowing for the determination of its composition, age and the nature of its source region. But complex areas, where comprehensive studies demand a real time, in-depth, working knowledge of complicated geologic “mixes,” require humans who can recognize and mentally process what they see before them.

Fieldwork is a complex discipline, whereby an experienced geologist maps an area and chooses samples – not just rocks picked up at random, but rather carefully chosen – significant and representative samples that inform us about process and history. In any natural setting, literally billions of bits of data could be collected. And that’s what a machine does – it collects data. A human field scientist also collects data, but they also are able to high-grade it by collecting only the most significant and relevant data. It takes extensive study, then training and experience in the field, to be able to recognize the significant and distinguish it from the trivial – to see the big picture. We often remark on the Mars Exploration Rovers for their accomplishments, yet for all the data collected, we still cannot draw a simple geologic cross-section of those landing sites, and we still do not know the origin of many of the rocks at the site (igneous or sedimentary). A human geologist would have obtained this important information after a few hours of fieldwork. The mass- and power-intensive humans give a big return on their investment.

In addition to fieldwork, humans possess other qualities that machines do not. The ability of people to recognize, diagnose and solve equipment malfunctions has been proven time and again throughout the history of the space program. The Apollo 17 crew not only explored the valley of Taurus-Littrow, they also deployed an experiment package that required careful installation and alignment. They fabricated and replaced the fender of their lunar rover by using the famous stand-by of all terrestrial repairmen, duct tape and plastic maps (if the rover fender had not been replaced, the dust kicked up by the rover wheels would have soon coated all electronic equipment, leading to overheating and termination of the surface exploration). During the Skylab program (1973), repair work by the crew saved the crippled space station after it was damaged during launch. Literally heroic efforts by Pete Conrad and his crewmates Paul Weitz and Joe Kerwin allowed not only habitation of the overheated Skylab, which was then used by two subsequent crews, but literally saved the entire program. When it was discovered after launch that the mirror of the Hubble Telescope had been ground incorrectly, the crew of Shuttle Mission STS-61 were sent on a mission to put corrective lens on the telescope, again saving the entire program. The assembly and numerous repairs and maintenance of the International Space Station (ISS) require the use of both human and robotic assets to complete, without which the program certainly would not have survived. And this new era in space spawned an explosion of engineers and scientists, and dominated our culture with space movies, architecture, fashion and technology.

Fortunately for humanity, people are required in space to do what only people can do (while also dreaming up new things to do and new ways to do them) – tasks requiring experience and knowledge guided by reasoned judgment and imagination. The ability to act and then learn from such action is critical. People will always innovate solutions for seemingly intractable problems that may arise. A combination of fine-scale manual dexterity and expert, informed knowledge and the ability to react, creates an ease of capabilities in space unachievable by machines alone. The template created during the assembly of the ISS – in which people using robotic machines assembled a complex spacecraft in orbit – is the most likely and productive path for future space activity of all kinds.

Do we need people on the Moon? Fortunately, the answer is a resounding “Yes!” Humans bring unique capabilities that are needed to accomplish new things – unknowable things, things that will enhance our lives on Earth. Studies that conclude that only robots should conduct space and surface operations – as people require protective equipment and habitats – is shortsighted and harmful to a vibrant, intelligent, and inquisitive society. Both humans, and the machines they create to assist them, are required for success in this grand adventure.

]]>
http://spudislunarresources.nss.org/blog/are-humans-needed-on-the-moon/feed/ 23 1714
A Pioneering NASA Administrator http://spudislunarresources.nss.org/blog/a-pioneering-nasa-administrator/ http://spudislunarresources.nss.org/blog/a-pioneering-nasa-administrator/#comments Wed, 13 Sep 2017 19:38:46 +0000 http://spudislunarresources.nss.org/blog/?p=1680 Continue reading ]]> I have new post up at Air & Space discussing the “Pioneering Doctrine” devised by Rep. Jim Bridenstine as part of his American Space Renaissance Act (ASRA).  Although not yet a passed law, this doctrine is informative about his thinking on the rationale and strategic objectives of our national space program.  Comment here if desired.

]]>
http://spudislunarresources.nss.org/blog/a-pioneering-nasa-administrator/feed/ 15 1680
The Space “Field of Dreams” http://spudislunarresources.nss.org/blog/the-space-field-of-dreams/ http://spudislunarresources.nss.org/blog/the-space-field-of-dreams/#comments Thu, 16 Mar 2017 11:35:51 +0000 http://spudislunarresources.nss.org/blog/?p=1590 Over at Air & Space, some musings on the space program (real and faux) as inspiration.  Comment here, if so inclined.

]]>
http://spudislunarresources.nss.org/blog/the-space-field-of-dreams/feed/ 34 1590
Thoughts on National Geographic’s Mars mini-series http://spudislunarresources.nss.org/blog/thoughts-on-national-geographics-mars-mini-series/ http://spudislunarresources.nss.org/blog/thoughts-on-national-geographics-mars-mini-series/#comments Thu, 29 Dec 2016 19:34:29 +0000 http://spudislunarresources.nss.org/blog/?p=1537 Continue reading ]]>

Mars life awaits! (National Geographic/Robert Viglasky)

Well, this thing has set back the cause of space advocacy another 50 years.

We have now been subjected to six, 45-minute episodes of this dreary exercise in clueless propaganda. I expressed my initial reactions to the first episode previously and indicated my concern about the format, emphasis, dramatic pacing and factual content of the series. After watching all six episodes of Mars, my initial concerns about the quality and value of the entire series have been validated to a large degree.

Episode 6, Crossroads, covers the final existential crisis of the new Mars colony, in which all the previous accidents and difficulties borne by the colonists in the New World have rendered the entire project subject to termination (from which I take it that they are still dependent on Earth support and supply). Dolefully noting that “this isn’t the first time that we’ve had this problem,” the episode then proceeds to regurgitate a pastiche of spaceflight history recounted by advocates who describe how the Apollo project was the beginning of a human exodus into the cosmos, with a human mission to Mars as the first step, and how America betrayed their space dreams by not pursuing same.

All very enlightening – except that it was almost completely wrong from top to bottom, or at best subject to alternative – and a more logical – explanation. As I (and others) have written before, Apollo was not about conquering space, but was rather a Cold War battle for technical superiority, waged in space. The challenge issued by President Kennedy to the Soviet Union in 1961 was one of bloodless competition – which system was superior in terms of technological capability and managerial competence? At the time, the Soviets were ahead in space achievements, possessing heavy lift rockets and had already sent a man into orbit. In contrast, America had only flown Alan Shepard on a 15-minute suborbital hop. But because a race to the Moon required new technical developments that the Soviets did not yet have, it was thought to be a competition that America had a chance to win.

Apollo was successful because we marshaled the resources required to bludgeon all of the technical difficulties and programmatic obstacles into submission. And we were able to do this because at that time, we still possessed the technological-industrial infrastructure inherited from World War II and needed for the ongoing Cold War. With the primary objective of the Apollo program accomplished by Apollo 11 on July 20, 1969, the imperative to send people beyond LEO receded in urgency. However, the idea that manned spaceflight was somehow important to national interests remained, but at levels of expenditure much lower than it had been for the previous decadal program. It was for this reason that the development of the Space Shuttle was undertaken as the follow-on for Apollo, as it was thought that a more inexpensive, reusable means of getting people and cargo into space was important for enhanced future levels of space activity.

The oft-repeated trope that “Nixon cancelled Apollo – and our chance for Mars” was presented as received wisdom by the talking heads of the Mars mini-series. But there are several problems with this interpretation. The Saturn V production line was shut down by Presidential order in 1968; the President at that time was Lyndon Baines Johnson. The Agnew report of 1969, that famously advocated a human Mars mission to follow Apollo, was never going to be embraced by the Bureau of the Budget (Office of Management and Budget after 1970). The budgeteers at the time looked forward to the end of human spaceflight, believing that it served no scientific or technical purpose and that these critical resources were needed in other areas of the budget. That this course was not taken can be attributed to the head of OMB, Caspar Weinberger, who thought that human spaceflight uplifted and inspired the nation. Weinberger wrote up these thoughts in a memo to Nixon, who penciled his agreement with them in the margins. Thus was settled the question of human spaceflight in America’s future.

But continued flights to the Moon were not in the cards. Two close calls, one on the Apollo 12 mission (where the vehicle was struck by lightning during launch) and then again during the Apollo 13 mission (in which an oxygen tank exploded on the way to the Moon), made the managers of the Apollo program (especially Bob Gilruth, the Director of the Manned Spaceflight Center in Houston) eager to conclude the series of lunar missions. In contrast to the statements made on the last Mars episode, Nixon did not terminate the Apollo program because he got “spooked” by the Apollo 13 accident. The last Apollo 20 mission was cancelled because its Saturn V was needed to launch the Skylab orbital space station fully outfitted and “dry” while the subsequent cancellation of Apollo 18 and 19 reflected the sense that the program had fully accomplished its goals of beating the Soviets to the Moon. Apollo hardware was considered too expensive to produce and was over-designed for routine flights to low Earth orbit. Hence, the Space Shuttle. And the Shuttle was originally supposed to be only the first element in an eventual “Space Transportation System” that included the Shuttle, a low Earth orbit space station, a Moon tug and an interplanetary spaceship.

But what’s a little mangling of history compared to the technical shortcomings of the series? A key plot development involves the death of a scientist who opens a lab door into the near-vacuum of the Mars surface, causing an explosion and the collateral deaths of several crew members. What kind of engineer designs a door in a habitat module that opens into space without an airlock? What possible purpose could this feature have? This is not to mention the greenhouse scenes, growing plants in martian soil, material that is loaded with perchlorates and peroxides (this issue was also ignored in last year’s film, The Martian). When the life-threatening problem of losing power develops during a global dust storm lasting for months, two crew members volunteer to brave the blinding storm and in an attempt to restore power to the complex. The base nuclear reactor had not yet been activated so they fix the connectors at a junction box to the solar arrays. How do solar arrays function during this seemingly endless global dust storm? The answer: not very well. Yet with this “fix,” full power is restored and all becomes normal back in the habitat.

But the most ludicrous plot element comes at the very end of the series. After enduring mechanical difficulties, problems locating the habitat, a global dust storm and a few deaths, the sponsors back on Earth are ready to pull the plug on this experiment in off-world living. But wait! Let’s go out for one last look and collect a sample from a distant outcrop, upwind from the previous collection area. They do – et voilà! Thread-like structures activate and move with the introduction of water onto a slide under a microscope. Life on Mars has been found! The press eagerly crowds around Joon Seung, twin sister of the Mars base commander Hana. Mankind’s settlement on the New World has been saved! Next stop, the stars!

Seriously, how pathetic is this? A human outpost that clearly is costing more than it is worth is saved at the last minute – by science. Anyone who has had more than 5 minutes experience dealing with research and development by any government or commercial entity must surely find this plot device laugh-out-loud hilarious. Yet it is a solemn rite for the Humans to Mars devotees, who believe that finding life guarantees the funding of an endless series of future missions to the Red Planet.

Bob Zubrin appears on screen to intone to the Senate Space Subcommittee that “Mars is where the science is, Mars is where the challenge is, and Mars is where the future is.” That is surely news to the 99.9% of the scientific community who conduct research totally unrelated to anything dealing with Mars. Yet this belief is deeply ingrained in the Mars advocacy community and within NASA as well. The concept that you might use space for practical benefits to create infrastructure and wealth seems alien to them.

Too bad Mystery Science Theater 3000 isn’t on any more – this series would make great fodder.

]]>
http://spudislunarresources.nss.org/blog/thoughts-on-national-geographics-mars-mini-series/feed/ 16 1537
The National Geographic Society’s “Mars” – Nova Fabula http://spudislunarresources.nss.org/blog/the-national-geographic-societys-mars-nova-fabula/ http://spudislunarresources.nss.org/blog/the-national-geographic-societys-mars-nova-fabula/#comments Mon, 07 Nov 2016 19:17:08 +0000 http://spudislunarresources.nss.org/blog/?p=1511 Continue reading ]]> Which version of the EDL of the human Mars spacecraft (Musk ITS at top; NGS Mars at bottom) is fact and which is fiction? Sorry, trick question – they are both fictional.

Which version of the EDL of the human Mars spacecraft (Musk ITS at top; NGS Mars at bottom) is fact and which is fiction? Sorry, trick question – they are both fictional.

For me, a child of the Sixties, the National Geographic Society (NGS, or “Society”) provided an amazing window into the wonderful world of discovery. Founded in 1888, the Society has produced an enormous catalogue of books, TV programs and movies. Nine months after its inception, the now iconic National Geographic monthly hit the stands. For well over one hundred years, in issue after issue, the publication with the familiar yellow square graphic has taken eager readers to far away places, exotic locales and alien worlds – making the unknown interesting and accessible through the Society’s magnificent photography and artwork. Occasionally, a fold out map detailing the feature story is tucked between its pages. The Society’s map of the Moon is one of the best available. While I knew National Geographic through years of enjoying its publications and programs, I remained unaware of the Society’s history of controversies. My knowledge about science and history (and its telling) is much broader today.

During its 128-year history, the Society has sponsored expeditions to remote corners of the globe, including Richard Peary’s 1909 attempt at the North Pole. When Dr. Frederick Cook announced in 1909 that he had attained the pole the previous year, the Society began a campaign of disparagement of Cook’s claim in favor of its own sponsored Peary expedition. Cook’s credibility had been previously questioned by the revelation of a member of his climbing team that his ascent of Mt. McKinley in 1906 had been fabricated. Thus, the NGS felt unassailable in their support of Peary’s claim that denied the priority of Cook’s claim. The campaign to give Peary credit for being first to reach the North Pole succeeded with an act of Congress that declared his claim valid (the vote was not unanimous). A re-examination of the published and unpublished evidence by arctic expert Wally Herbert in 1989 concluded that most likely, neither Peary nor Cook reached the pole. The NGS still supports Peary’s claim of priority.

The Society repeated this pattern of high profile, unquestioning support for their sponsored expeditions with Richard Byrd’s 1926 claim to have been the first person to fly over the North Pole. His claim was questioned, most notably by Bernt Balchen, the Norwegian polar aviator who later piloted Byrd’s aircraft on its first flight over the South Pole. Balchen was present at Byrd’s departure for the North Pole and had timed the length of the flight. On the basis of the known performance of the Fokker Tri-motor aircraft, Balchen concluded that Byrd must have turned around well short of the pole. Once again, the NGS stepped forward with a massive propaganda campaign to support Byrd’s claim.

This sort of no-holds-barred advocacy by the National Geographic Society’s isn’t some relic of bygone days either. For many years now, the NGS has promoted the idea of catastrophic climate change, most recently illustrated by the publication in their latest atlas of a blatantly incorrect map of the North Polar ice cap, a map where the Arctic basin appears to be mostly ice-free (the NGS understands well the maxim that a picture is worth a thousand words). In fact, satellite data show there has been little change in the extent of the polar cap since the publication of the Society’s 1971 map. Global, catastrophic, human-caused climate change is a politically correct, fashionable topic that has permeated all thinking and policy. The NGS has thrown its lot in with the sky-is-falling-and-we’re-all-doomed crowd. Everything has become politicized and science is no exception.

Which brings us to National Geographic’s current massive propaganda campaign, the Mars project. This combination documentary/drama is somewhat reminiscent of Walt Disney’s 1955 Tomorrowland television series about the conquest of space, which also introduced space visionary Wernher von Braun to the American public. Like its predecessor, Mars seeks to educate and enthuse the public in the belief that human missions to the Red Planet lie just around the corner. Toward that end, Mars is a pull-out-all-the-stops, Hollywood mega-production, featuring the talents of the renowned Director/Producer of the movie Apollo 13, Ron Howard.

This new series is officially set to premiere on November 17, 2016. However, Episode 1, Novo Mundo (The New World) is available for streaming on the web and the Society has created a massive, multi-page web site to promote the show. In addition to their dramatized version of a fictional first human mission to Mars, the series includes sound bites and interviews with numerous space experts proclaiming the imminence of the era of Mars flight. Needless to say, a variety of Mars advocates are heavily immersed and invested in the promotion of this show, including most notably NASA (whose own “Journey to Mars” remains as much in the realm of fiction as the NGS television series) and SpaceX’s CEO and “Chief Designer” Elon Musk, the architect of an “Interplanetary Transport System” that he envisions will enable mass human migration to Mars.

SpaceX and its various activities are showcased prominently in Mars with story-moving references and clips. So, not too unexpectedly, the spacecraft chosen for the Mars series bears a remarkable resemblance to the futuristic animated video of a SpaceX Interplanetary Crew Transport System that Elon Musk released during his recent, highly promoted International Astronautical Congress (IAC) speech. After a decelerating aerothermal entry into the martian atmosphere, the vehicle pitches around for a propulsive braking burn onto an upright, vertically precarious landing. From the discussion in the “documentary” portion of the first episode, including clips of SpaceX’s Falcon 9 first stage landings, the casual viewer is left with the false impression that this “Entry-Descent-Landing” problem has been solved. This is far from the case. To date, landing on Mars has proven to be extremely problematic and more often than not, attempts have been unsuccessful.

Not shown in series’ intermingling of fact and fiction are the many outstanding problems and questions about a human mission to Mars. Interestingly, the opening episode doesn’t include the launch of mission pieces, the ship’s assembly and fueling in space, the departure of the Mars mission, nor are we given a window into their subsequent months of boredom and peril during the 6-9 month journey to Mars. That the crew risks exposure to several lifetime limits worth of radiation is alluded to, but nothing is revealed about how this hazard is to be addressed and mitigated. In the accompanying interviews and short films, the series’ producers note that the focus of the film is deliberately put on activities to be undertaken on Mars – on establishing a human foothold on the “Novo Mundo.” In the opening episode, the possible ill effects of radiation and solar UV exposure, toxic soil chemistry, and the numbing cold in the near-vacuum of the martian surface are lightly skipped over or set aside.

One of the more contrived aspects of the first episode is its depiction of the programmatic structure of the mission – the postulated creation of an “International Mars Science Foundation,” a politically correct, multi-cultural organization directed by a council of administrators and bureaucrats, convening at a round table (no doubt to indicate the universal equality of their status). A placard placed in front of each seated bureaucrat suggests that they represent the world’s space agencies (I saw JAXA on one of them). Presumably, either the world has banded together to finance this venture or Elon’s reusable spaceships have made Mars voyaging a trivial expenditure. Considering that none of the SpaceX Mars architecture pieces have gotten within 2000 miles of any launch site, this series is more Nova Fabula (new fable) than Novo Mundo.

In fact, this whole exercise is more akin to a worship service for the Mars faithful than it is a serious science and engineering documentary bent on sketching out a future for space travel. No identifiable rationale or motivation is given for this journey – more “on a hope and a prayer” than actual engineering and science. The short “Why Mars?” featurette on the NGS web site repeats the usual smorgasbord of platitudes – “because it’s there,” “human destiny,” “search for life” – but none of these reasons are unique to a human Mars mission. Why Mars and why “next” are two questions that go unanswered. It is simply assumed that viewers will agree with the premise of the producers (and the series’ contributing experts) that Mars is the “obvious” next destination in space, making those who believe differently unfashionably out of touch and probably “anti-science.”

This promoted fable – that Mars represents “humanity’s destiny” – takes a still very far-away vision, and through the use of spectacular imagery and propaganda, attempts to sell it to a public accustomed to instant gratification and thus programmed to “believe.” This suits many in positions of power. Hyping the romance of a human Mars mission keeps the public (not to mention a highly compliant and ignorant media) from asking tough questions of their leaders and their space agency: “How are you going to get to Mars?” “What will you do when you get there?” “Why this, to the exclusion of all else?” “Is there a more efficient way?” “What is the payback for those who will foot the bill?” Perhaps these questions will be addressed in future episodes, but somehow I doubt it.

Regardless of how the facts evolve and emerge over the next 20 years, since the National Geographic Society has chosen to sell the idea of a Novo Mundo, its sizable institutional resources will aggressively launch and sustain a multimedia campaign to promote this Novae Fabula. The fictional Mars mission portrayed here is said to occur in 2033 – that’s only 16 years away. Here’s my prediction for what will actually occur in 2033: the powers-that-be then will predict that a human mission to Mars will take place “within the next two decades.”

]]>
http://spudislunarresources.nss.org/blog/the-national-geographic-societys-mars-nova-fabula/feed/ 19 1511
Virtues of the 90-Day Study http://spudislunarresources.nss.org/blog/virtues-of-the-90-day-study/ http://spudislunarresources.nss.org/blog/virtues-of-the-90-day-study/#comments Mon, 25 Jul 2016 15:59:04 +0000 http://spudislunarresources.nss.org/blog/?p=1448 Continue reading ]]> Overblown? The 90-Day study, in a nutshell.

Overblown? The 90-Day study, in a nutshell.

Broach the topic of the “90-Day Study” with almost any random person involved with space for more than 25 years and you’re likely to provoke a reaction akin to showing Dracula a crucifix. This document is now offered as a cautionary tale about what flows from a devastating report – a bloated, impenetrable disaster of transcendent magnitude that doomed President George H.W. Bush’s Space Exploration Initiative, the 1989 attempt to fashion a set of long-range strategic goals for America’s civil space program. Released to near universal disdain and condemnation, its dread name lives in infamy in space history circles.

To understand what is behind all this opprobrium, I’ll begin by describing the historical circumstances under which this report was written, followed by the reasons it took the form that it did and what truth, if any, lies in the rather overblown reaction to it described above.

Twenty years after our space program’s peak during the Apollo effort, and despite President Reagan’s initiation of the Space Station Freedom project in 1984, our space program was under fire. The tragic loss in January 1986 of the Space Shuttle Challenger with her crew of seven led to critical reappraisals of the nation’s human spaceflight program. The fact that the accident seemed to result from hubris and incompetence only increased the volume of criticism. In time-honored Washington fashion, it was thought that a committee of experts should examine our space program and recommend a long-range direction. As it turned out, such a group was finalizing its report and mere months from issuing their results. The National Commission on Space (a.k.a. the Paine Commission) report (May 1986) was a grand vision of orbiting space cities, lunar and martian bases, and human expansion into the Solar System. Its unfortunate timing – along with its marked science-fiction flavor – led it to be largely ignored by policy makers in government.

However, the Paine Commission was not the only group working to devise a new direction for space. Several parallel efforts to plot a future course for NASA were also underway, both within and outside the agency. Since the early 1980s, a movement to examine the potential benefits of a return to the Moon had been studied by a group at the NASA Johnson Space Center (JSC) in Houston. Simultaneously, another effort was studying human missions to Mars (there had been no missions of any kind to Mars since the Viking explorations of the mid-1970s). These two streams converged within the agency in the Office of Exploration, which conducted paper studies on how to advance human spaceflight beyond low Earth orbit. An internal NASA group chaired by astronaut Sally Ride released a report to the administrator in 1987 that outlined the possible benefits and approaches for a variety of these initiatives, including human missions to the Moon and Mars. This report and the variety of work being done by NASA and others outside the agency provided the backdrop for a Presidential decision.

On July 20, 1989, the occasion of the 20th anniversary of the first landing on the Moon by Apollo 11, President George H.W. Bush gave a speech at the National Air and Space Museum in Washington that called for a return of people to the Moon – “this time to stay” – to be followed by a human mission to Mars. This policy proposal was dubbed the Human Exploration Initiative (HEI, later changed to “Space Exploration Initiative,” or SEI). The SEI included both robotic and human missions designed to extend human reach beyond low Earth orbit (LEO). SEI was largely the brainchild of the revived National Space Council, a White House-level policy group reporting to Vice-President Dan Quayle. Both Quayle and the Council were strong advocates of revitalizing the space program with a challenging set of goals. NASA was directed to produce a report within 90 days – a report that was to outline possible mission architectures and identify the technologies needed to accomplish those goals. The report effort was centered at JSC largely because that center’s Exploration Program Office had done the most detailed initial analyses of the problem. JSC Center Director Aaron Cohen was in charge of the study, with day-to-day operations headed up by engineer Mark Craig.

This intensive study effort took place during the months of August-October 1989, with the report issued late in November of that year. Upon its briefing and release to the National Space Council, the brickbats and invective began: unimaginative, bloated and “Battlestar Galactica approach” were just some of the descriptors attached to the report. Historical legend holds that because the report was so awful, the Space Council immediately engaged with a group at the Department of Energy’s Lawrence Livermore National Laboratory to devise and offer a counter-strategy – the “Great Explorations” scheme of Lowell Wood that used inflatable spacecraft and was rumored to cost less than one-tenth the amount of money estimated for the heavily panned 90-Day Study approach.

So just what did the 90-Day Study advocate? In brief, it described the vehicles and technologies needed to undertake human lunar and martian missions. It assumed the continued operation of the Space Shuttle, with new missions beyond LEO staged from Space Station Freedom (currently, the International Space Station). The new vehicles necessary for trans-LEO missions were outlined and described, including a Shuttle-derived heavy lift vehicle and a reusable cislunar transfer stage to send payloads to the Moon (using an aerobrake for Earth return). It also called for research on a nuclear powered Mars transfer stage and nuclear reactors for surface power systems on both the Moon and Mars. Extensive robotic precursor missions were outlined, including global surveys from orbit for the Moon and Mars, geophysical networks for the martian surface, a robotic sample return from Mars to certify the planet safe for human landings, and deployment of an infrastructure of communications satellites in martian orbit.

This list of assets was comprehensive, and yes, expensive. However, what was being described was nothing less than a permanent human foothold off-Earth. Moreover, this system of space assets and transportation infrastructure would be acquired and placed into operation over the coming three decades. The Space Council was disappointed that cheaper options were not presented, but it isn’t clear that had been part of the mandate for the study that the Council ordered from NASA. In contrast to claims that no architectural options were presented, five “Reference Approaches” were described that varied the phasing and dates of initial operational capability for the lunar base and Mars mission. In this regard, the biggest criticism of the report is that it took President Bush’s SEI speech as its policy guidance – “back to the Moon to stay and then to Mars.” This seems a strange criticism of a report – that it followed a directive given by the President.

Knowing how the 90-Day Report came about and how it was received, what is so objectionable about the report? As I read it, it outlined a step-wise, incremental approach to conducting lunar and martian missions, whereby existing assets are incorporated – employing continuity of purpose to build sustainability – and not discarded. Shuttle and Station would both support the missions beyond LEO and become integral parts of the spaceflight system. I contend that the architectural framework laid out in the 90-Day Study is exactly how we should approach going to the Moon and conducting missions to Mars. The report was criticized on the one hand for being “old school” and unimaginative in its use of proven technology, but then simultaneously criticized as taking too much risk in its advocacy of some advanced technologies, such as nuclear thermal propulsion and aerobraking into martian orbit.

So which is it – too Buck Rogers or too stodgy?

I can agree with the criticism that the architectural details of the report contained a lot of featherbedding by various widget-makers throughout the agency, but there was nothing in it that a good scrub by some hard-nosed systems engineers could not have fixed. Yes, it was Christmas-treed, but by looking past those superfluous (and expected) tinsel-hanging efforts, one sees good roots and branches beneath. The basic approach harkened back to the original von Braun architecture – shuttle, station, Moon tug, Mars spacecraft, a stepwise, incremental, cumulative progression to ever-farther regions of the Solar System. In contrast to some opinions, the technical approach laid out in the 90-Day Study was the very antithesis of the Apollo approach – the “all-up”, single-shot, self-contained missions to dash somewhere, plant a flag, and return, only to learn that your program’s been cancelled the day after your ticker-tape parade.

The cost numbers associated with the plan outlined by the 90-Day Study are subject to much confusion. The report itself contains no cost numbers whatsoever, the decision having been to include the estimates in a separate document, presumably on the fear that they would be misinterpreted (which happened). The numbers came from two different cost estimation models (then in use by JSC and NASA Marshall Spaceflight Center in Huntsville) and ran to about $470 to $540 billion (FY1990 dollars), over a 30-year period of execution. These numbers included a 55% reserve for unexpected difficulties or accidents. While such budget numbers are substantial (the agency budget in those years was about $15 billion/year), spending such sums on NASA would still not have exceeded about 1.5% of the federal budget – this at a time when massive cuts in defense spending associated with the alleged “peace dividend” produced by the end of the Cold War were looming. Such a sum of money would have been about the same amount spent by the Department of Energy during this 30-year period. The idea that we “could not afford it” is simply ludicrous, especially as one motivation for devising the SEI in the first place was to partly maintain the industrial-technical infrastructure used to defeat the Soviet Union.

In the historical telling, the story goes that upon receipt of the 90-Day Study, the Space Council was so aghast that it sent the report to the National Research Council (NRC) for evaluation (and presumably, dissection). If the thought was that the NRC would trash it, such hope was misplaced. The NRC evaluation, while not uncritical of some details, largely acknowledges that the 90-Day Study offered a reasonable, relatively low risk approach to carry out the Presidential mandate. The White House then set up an “outreach” program, asking for the best technological ideas from many sources in order to show just how off-base the 90-Day Study was. A special group was gathered to evaluate these ideas – the “Synthesis Group” led by astronaut Tom Stafford (of which I was a member). After a year of synthesis and analysis, the group issued its findings: there are no “magic beans” technologies. To carry out the President’s Moon-Mars initiative, heavy lift vehicles, nuclear propulsion, extensive robotic precursor missions and many other items found on the checklist of the “overblown” 90-Day Study, were needed.

What about Livermore’s “Great Explorations” idea? The use of inflatable vehicles for human spaceflight doesn’t actually solve the fundamental problem of trans-LEO missions: most of the mass of the vehicle on departure consists of propellant, not habitats or transit vehicles. Moreover, inflatables have their own technical issues. Interior supporting structures are complex mechanisms and potential fail-points during deployment in space. The real problem solved by inflatable spacecraft is not mass, but payload volume – in the 1990s, large diameter modules could not fit on existing expendable launch vehicles or inside the payload bay of the Shuttle. Supposedly, by using inflatables, we would avoid the huge expense of developing a new heavy lift vehicle. But even this criticism is not valid, in that development of the unmanned Shuttle side mount launch vehicle would have solved this problem at relatively low cost (most of the then-existing infrastructure could be used), as well as providing a way to get massive pieces into orbit in single chunks.

So now, 25 years after the release of the “disastrous” 90-Day Study, and in light of current events, this study deserves another look. It is not a perfect document, containing some superfluous elements and questionable cost estimates, but its basic architecture uses exactly the type of incremental, stepwise, cumulative approach we need (and more and more are calling for) if we are ever to build a sustainable deep space transportation system. One final aspect of the report is notable: the 90-Day Study was the first agency architecture to incorporate resource utilization (ISRU) – specifically, the production of oxygen from lunar regolith (oxygen is 4/5 of the mass of the total propellant load in a LOX-hydrogen system). This resource utilization aspect of the 90-Day plan was incorporated prior to any knowledge of the existence of lunar polar ice (a game changer that would have been soon discovered anyway from the robotic precursor missions planned as part of the SEI). So once again, the 90-Day Study is, in many ways, well in advance of current plans.

I urge you to read the 90-Day Report and judge its merits and faults for yourself. It’s tragic that so much written about it inaccurately describes its content, or at a minimum, fails to provide any historical context for why the report advocated certain approaches. It is remembered as a despised, failed report, rejected by those who requested it and to this day, misunderstood through ignorance of the facts. It contained the bad news (and nobody likes to receive that) that there are no magic beans to climb to the stars – it will require a variety of complex, difficult and (yes) expensive pieces to establish the spacefaring system that we need. Inflatable spacecraft were the magic beans of the 1990’s space program – today’s space program has its own version of them. The cold hard realities of human spaceflight cannot be denied and the truth of that always comes out in the end.

]]>
http://spudislunarresources.nss.org/blog/virtues-of-the-90-day-study/feed/ 32 1448
Delusions of a Mars Colonist http://spudislunarresources.nss.org/blog/delusions-of-a-mars-colonist/ http://spudislunarresources.nss.org/blog/delusions-of-a-mars-colonist/#comments Tue, 21 Jun 2016 16:49:17 +0000 http://spudislunarresources.nss.org/blog/?p=1426 Continue reading ]]> Abracadabra! We turn Mars into a second Earth (National Geographic Society)

Abracadabra! We turn Mars into a second Earth (National Geographic Society)

A perennial talking point promoted by the space media is the belief that to save humanity, we must make a beeline to Mars. Supposedly, Mars is so “Earth-like” that it is the natural second home for humanity in space, a place to assure species survival in the event of some planetary catastrophe (such as a large meteorite impact). Because Mars could be “terraformed” to become even more Earth-like, we must focus our principal space efforts on undertaking human missions to Mars – ASAP (for the last 45 years).

For any sustainable human presence off-Earth to be successful, one must develop the means to arrive, survive and thrive. Most commentary on human Mars missions has focused entirely on the requirement to arrive because many of the technical problems associated with this must-accomplish first task remain unresolved. Presently, we don’t know how to build fault-tolerant, in-space serviceable systems necessary to support human life over the course of a multiple-year-long Mars mission. Protecting the crew from exposure to constant high-energy cosmic rays and sporadic solar particle events requires some means of shielding the vehicle – a daunting prospect in terms of mass and power. The means of a safe entry, descent and landing of a spacecraft (having mass of tens-of-tones) onto the martian surface must be developed, as these are currently completely unknown “details.” And if the trip is to be more than one-way, then provisioning, refueling and launching for the return home must be sorted out too. These issues must be resolved before a crewed mission to Mars can take place.

For the moment, I’ll ignore these non-trivial “arrival” issues and focus instead on the two remaining objectives – “survive and thrive.” Only rudimentary attention has been given to how humans will survive on the martian surface. Certainly, additional problems will come up that we cannot know now, but the ones we do understand are formidable enough. In contrast to the press it receives, the martian surface is a cold, alien, hostile environment – much more dangerous than free space or even, in some respects, the lunar surface. Although Mars does have an atmosphere, it is composed almost entirely of carbon dioxide and has less than one-hundredth the surface pressure of Earth. While this thin atmosphere protects the surface from the smallest micrometeoroids, it does not shield it from the highest energy cosmic rays or solar ultraviolet (UV) radiation. In addition, because Mars has no global magnetic field (and we cannot create one), galactic cosmic rays will always shower the surface, making underground dwellings a must – not in transparent domed cities on the surface, as portrayed in science fiction novels and films.

Like the Moon, the surface of Mars is covered with a fine dust, but unlike lunar soil, martian dust is chemically reactive – a toxic mix of perchlorates and peroxides that, combined with the high flux of solar UV and galactic cosmic rays to which the surface is exposed, makes for an almost completely sterilizing environment. The Viking landers flown 50 years ago could not find any organic matter (i.e., compounds made of carbon, nitrogen and hydrogen) in martian soil in any concentration at the parts-per-billion sensitivity level. The scenes in the recent film The Martian (held up by NASA as a model of scientific veracity and prediction) in which the astronaut fertilizes the martian soil and grows potatoes, is complete fantasy – we simply do not know how to alter the soil chemistry of Mars, fertilize it with organic matter, and then grow radiation-tolerant plants quickly enough to support a human community, let alone a single astronaut.

Water is thought to be present on Mars, so clearly supplying water would be no problem. Or would it? The upper surface of Mars is covered by rock and dust, but ground ice is present in many locations at depths between a few meters to several tens of meters. Subsurface ice could be reached by drilling or by setting off an explosive charge. Martian water is likely to be saline, which will necessitate its distillation for human consumption or agriculture, requiring more electrical power and adding complexity to surface systems.

Human communities need energy to do almost anything and energy production on Mars is a significant issue. Mars is farther from the Sun than the Earth is, so solar panels will generate only about half the energy (so at least twice the collection area will be needed). Because there are frequent dust storms on Mars, solar panels will require regular cleaning to assure peak power production; such a task is challenging for very large areas (thousands of square meters) of solar arrays. The gravity of Mars (0.38 of Earth) is more than twice that of the Moon (0.16 of Earth) and landing large masses of supplies and infrastructure on Mars is difficult. Perhaps solar arrays can be manufactured from local materials on the martian surface but as we do not know the surface chemical composition of different localities in detail, we do not know how difficult this might be. The obvious solution to these difficulties in energy production is to deploy a nuclear fission reactor; the problem is that no reactor of suitable size for use in space exists.

So aside from the inconvenient facts that we don’t know how to safely make the voyage, how to land on the planet, what the detailed chemistry of the soil is, or if we can access potable water, whether we can then grow food locally, or how to build habitats to shield us from the numbing cold and hostile surface environment, don’t know what protection is needed due to the toxic soil chemistry, or how to generate enough electrical power to build and operate an outpost or settlement – in spite of these annoying details that make this idea prohibitive, the creation of a Mars colony within a decade is marketed to the public as if the plans had already been drawn up.

But let us say for the sake of argument that we have addressed the first two tasks adequately – we have arrived and survived. How do we “thrive” on Mars? Of all the notions promulgated in the media about future Mars colonization, this last element is the one that is always ignored. With flashy artwork depicting futuristic cities, sleek flying cars, and lush green fields resplendent under transparent crystal domes (in startling contrast to the red-hued surrounding desert of the martian surface) it is simply assumed that a human colony on Mars will evolve into some kind of off-Earth utopia.

But how will these future Mars inhabitants make a living? And by that, I mean what product or service will they offer that anybody on Earth will want? If you think that the answer is autarky (complete economic isolation and self-sufficiency), then you are imagining an economy (and likely, a political state) in which North Korea is a free market, pluralistic paradise by comparison. People who migrate to Mars need more than food and shelter – they will need imports from Earth, material and intellectual products designed to enrich and refine life on the frontier. What will they have of value to trade or to sell for these imports?

We do not know if Mars contains anything that would have economic value on Earth. Mars has had a complex geological evolution, so we might expect the formation of ore deposits, possibly of substantial value. But even if this is true, we have no idea where these deposits occur or if they are accessible for mining and refining. Martian products must be of sufficient worth so as to merit their transportation back to terrestrial markets, which would require their launch out of the substantial Mars gravity well and back into the even greater gravity well of the Earth. Much is made of the possible economic value of “information,” but it is not clear that Mars is particularly rich in factual data marketable to those back on Earth, although a martian pioneer might have desperate need of it – which would make them their own “customers” and exacerbate the economic disparity of the colony to an even greater degree.

Colonies are not founded in some far-off land because they “look cool” or because some plutocrat wants to retire there. They are established primarily for two reasons: power projection and/or wealth creation. Small, barren islands or isolated localities might not offer much in the way of wealth, but their strategic value might be immense (e.g., Gibraltar). On the other hand, the New World was often more trouble than profit to most European states in the immediate aftermath of Columbus’ discovery. But once the gold and silver started flowing, colonists soon followed and pursued profitable and sustainable endeavors once they arrived and survived. The idea of a sustainable space settlement requires the creation of some kind of market – either economic or strategic – for whatever they find or produce there. Such might be achievable in free space (e.g., the generation and sale of space solar power) or on the Moon (e.g., the production of water to fuel a permanent space transportation system). Mars is too far away and relatively inaccessible to serve strategic ends, and an economic driver has not been identified – other than reality TV to observe any surviving arrivals as if they were zoo creatures (“Mars Survivor!” Who gets voted out of the airlock this week?).

Of all the “thrive” concepts yet advanced for space settlements, the idea of “terraforming” Mars (i.e., making the martian surface conditions like those of the Earth) is the most unbelievable. In essence, this is a proposal to manufacture an Earth-like environment on a planetary scale – a technical task we can barely manage within the confines of a single, small spacecraft. Yet some blithely speak of altering a planet’s atmosphere, hydrosphere and crust to make a “second Eden” where humans can roam free and settle widely. The unknowns involved in such an undertaking are not simply monumental, they are literally inestimable – to borrow a phrase, “we don’t know what we don’t know.” We are still uncertain about all of the factors that control and influence Earth’s climate and habitability, let alone know enough to manipulate the evolution of an alien planet toward some desired end. Spurring imaginations, this fantasy future is always depicted in beautiful artwork, where colonists inhabiting the ancient, parched red planet, see a world gradually being overtaken by shades of blue and green. We just need to go! This is science fiction indeed.

This new delusion – Mars as the New World – illustrates better than almost anything else the anemic state of the American space program. This debilitating condition allows for patent nonsense to be seriously peddled to a credulous, compliant and negligent media who will eagerly print virtually any headline or story.   The space community needs to rethink how they communicate the truth about our space future to the public (and to future engineers and scientists) if they seriously plan to go anywhere in the future.

]]>
http://spudislunarresources.nss.org/blog/delusions-of-a-mars-colonist/feed/ 34 1426
Lunar Resources: Beyond the Fringe http://spudislunarresources.nss.org/blog/lunar-resources-beyond-the-fringe/ http://spudislunarresources.nss.org/blog/lunar-resources-beyond-the-fringe/#comments Tue, 26 Apr 2016 12:29:01 +0000 http://spudislunarresources.nss.org/blog/?p=1387 Continue reading ]]> A new, somewhat philosophical post up at Air & Space on the recent Royal Astronomical Society meeting in London on using space resources.  By the way, that great, appropriate title (alluding to the British comedy group) was a suggestion of my editor at Air & Space, Tony Reichhardt.  Thanks, Tony!

The meeting in London was a good one, with lots of interesting presentations.  Comments on the post are welcome.

On another note, I will be on The Space Show this coming Sunday (May 1, 2016) at 2:00 pm Central time, discussing my new book, The Value of the Moon.  Feel free to listen and call in the show with questions or comments.

]]>
http://spudislunarresources.nss.org/blog/lunar-resources-beyond-the-fringe/feed/ 13 1387